Deze website maakt gebruik van cookies. Klik hier voor meer informatie.X sluit
Uitgebreid zoeken
Boek

Analytical Chemistry

A Chemist And Laboratory Technician's Toolkit

Analytical Chemistry - MaHam, Aihui; Ham, Bryan M. - ISBN: 9781118714843
Prijs: € 149,95
Levertijd: 12 tot 15 werkdagen
Bindwijze: Boek, Gebonden
Genre: Scheikunde algemeen
Boekenliefde.nl:
Analytical Chemistry op boekenliefde.nl
Add to cart

Beschrijving

A comprehensive study of analytical chemistry providing the basics of analytical chemistry and introductions to the laboratory



  • Covers the basics of a chemistry lab including lab safety, glassware, and common instrumentation 

  • Covers fundamentals of analytical techniques such as wet chemistry, instrumental analyses, spectroscopy, chromatography, FTIR, NMR, XRF, XRD, HPLC, GC–MS, Capillary Electrophoresis, and proteomics

  • Includes ChemTech an interactive program that contains lesson exercises, useful calculators and an interactive periodic table

  • Details Laboratory Information Management System a program used to log in samples, input data, search samples, approve samples, and print reports and certificates of analysis

Details

Titel: Analytical Chemistry
auteur: MaHam, Aihui; Ham, Bryan M.
Mediatype: Boek
Bindwijze: Gebonden
Taal: Engels
Aantal pagina's: 688
Uitgever: John Wiley & Sons Inc
Plaats van publicatie: 01
NUR: Scheikunde algemeen
Afmetingen: 223 x 286 x 40
Gewicht: 1798 gr
ISBN/ISBN13: 9781118714843
Intern nummer: 29815447

Biografie (woord)

BRYAN M. HAM, Ph.D., has worked in analytical chemistry laboratories for over 25 years including petroleum, chemical, environmental, foodstuff, and life science research, and has a doctorate in analytical chemistry. He has published 15 research papers in peer reviewed journals and two books: Even Electron Mass Spectrometry with Biomolecule Applications (Wiley, 2008), and Proteomics of Biological Systems: Protein Phosphorylation Using Mass Spectrometry Techniques (Wiley, 2012). He is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection New York Laboratory. He is a member of the American Society of Mass Spectrometry (ASMS) and the American Chemical Society (ACS).

AIHUI MAHAM, Ph.D., is an expert in nano–materials including the synthesis and characterization of chemical and biological nano–sensors. She is also an expert in the field of inorganic materials chemistry, and their characterization utilizing methodologies such as SEM, XRD, XRF and OES. She has published numerous research papers including a recent review entitled Protein–Based Nanomedicine Platforms for Drug Delivery (Small, 2009), which has been cited over 170 times by other researchers. She is currently working for the Department of Homeland Security at the U.S. Customs and Border Protection New York Laboratory.

Recensie

"This book intends to combine theoretical and practical aspects of analytical chemistry, and generally, it can be considered a success: both the concepts and analytical techniques and the focus on the laboratory aspects of this field are chosen didactically well, offering not only a detailed overview but also demonstrating connections of different techniques." (Analytical and Bioanalytical Chemistry 2016)

Inhoudsopgave

Preface xxiii

Author Biographies xxv

Acknowledgments xxvii

1 Chemist and Technician in the Analytical Laboratory 1

1.1 Introduction The Analytical Chemist and Technician 1

1.2 Today s Laboratory Chemist and Technician 1

1.2.1 Computers in the Laboratory 1

1.2.2 Laboratory Information Management Systems (LIMS) 1

1.3 ChemTech The Chemist and Technician Toolkit Companion 1

1.3.1 Introduction to ChemTech 1

1.3.1.1 Opening ChemTech 2

1.3.1.2 Interactive Periodic Table 2

1.4 Chapter Layout 2

1.4.1 Glassware, Chemicals, and Safety 2

1.4.2 Basic Math and Statistics 2

1.4.3 Graphing and Plotting 4

1.4.4 Making Laboratory Solutions 4

1.4.5 Titrimetric Analysis 4

1.4.6 Electrochemistry 5

1.4.7 Laboratory Information Management System (or Software) LIMS 5

1.4.8 Instrumental Analyses Spectroscopy 5

1.4.9 Instrumental Analyses Chromatography 5

1.4.10 Instrumental Analyses Mass Spectrometry 5

1.4.10.1 Mass Analyzers 5

1.4.10.2 Mass Ionization 5

1.4.11 Small Molecule and Macromolecule Analysis 5

1.5 Users of ChemTech 6

2 Introduction to the Analytical Laboratory 7

2.1 Introduction to the Laboratory 7

2.1.1 The Scientific Method 7

2.2 Laboratory Glassware 7

2.2.1 Volumetric Flasks 7

2.2.2 Beakers and Erlenmeyer Flasks 7

2.2.3 Graduated Cylinders 8

2.2.4 Pipettes 8

2.2.4.1 Steps for Using Pipette Bulb (a) 8

2.2.4.2 Steps for Using Pipette Bulb (b and c) 10

2.2.4.3 Autopipettes 11

2.2.5 Evaporating Dishes 11

2.2.6 Flames and Furnaces in the Laboratory 11

2.2.6.1 Bunsen Burners 11

2.2.6.2 Crucibles 11

2.2.6.3 Ashing Samples 11

2.2.6.4 Muffle Furnaces 14

2.2.7 Laboratory Fume Hoods 14

2.2.8 Drying Ovens 15

2.2.9 Balances 15

2.2.10 Refrigerators and Freezers 16

2.2.11 Test Tubes 16

2.2.12 Soxhlet Extractions 16

2.2.13 Vacuum Pumps 18

2.3 Conclusion 18

3 Laboratory Safety 19

3.1 Introduction 19

3.2 Proper Personal Protection and Appropriate Attire 19

3.2.1 Proper Eye Protection 19

3.2.2 Proper Laboratory Coats 20

3.3 Proper Shoes and Pants 20

3.4 Laboratory Gloves 20

3.4.1 Natural Rubber (Latex) 21

3.4.2 Nitrile 22

3.4.3 Neoprene 22

3.4.4 Butyl 22

3.4.5 Polyvinyl Chloride (PVC) 22

3.4.6 Polyvinyl Alcohol (PVA) 22

3.4.7 Viton 22

3.4.8 Silver Shield/4H 22

3.5 General Rules to Use Gloves 22

3.6 Material Safety Data Sheet (MSDS) 22

3.7 Emergency Eye Wash and Face Wash Stations 23

3.8 Emergency Safety Showers 24

3.9 Fire Extinguishers 24

3.9.1 Types of Fires 24

3.10 Clothing Fire in the Laboratory 25

3.11 Spill Cleanup Kits 25

3.12 Chemicals and Solvents 27

3.13 First Aid Kits 27

3.14 Gasses and Cylinders 29

3.15 Sharps Containers and Broken Glass Boxes 29

3.16 Occupational Safety and Health Administration (OSHA) 29

4 Basic Mathematics in the Laboratory 83

4.1 Introduction to Basic Math 83

4.2 Units and Metric System 83

4.2.1 Introduction to the Metric System 83

4.2.2 Units of the Metric System 83

4.2.3 Converting the SI Units 84

4.3 Significant Figures 84

4.3.1 Significant Figure Rules 84

4.4 Scientific Calculators 86

4.4.1 Example Calculator 86

4.4.2 Window s Calculator 86

4.4.2.1 Windows Scientific versus Standard Calculator 86

4.5 ChemTech Conversion Tool 89

4.5.1 Using the Conversion Tool 89

4.5.2 Closing the Conversion Tool 89

4.6 Chapter Key Concepts 89

4.7 Chapter Problems 92

5 Analytical Data Treatment (Statistics) 93

5.1 Errors in the Laboratory 93

5.1.1 Systematic Errors 93

5.1.2 Random Errors 93

5.2 Expressing Absolute and Relative Errors 94

5.3 Precision 94

5.3.1 Precision versus Accuracy 94

5.4 The Normal Distribution Curve 94

5.4.1 Central Tendency of Data 95

5.4.1.1 The Arithmetic Mean 95

5.4.1.2 The Median 95

5.4.1.3 The Mode 95

5.4.1.4 Sticking with the Mean 95

5.5 Precision of Experimental Data 96

5.5.1 The Range 96

5.5.2 The Average Deviation 96

5.5.3 The Standard Deviation 97

5.5.3.1 Root Mean Square 97

5.5.3.2 Sample Standard Deviation 97

5.5.3.3 Comparison of the Three Methods 97

5.5.3.4 Using the Scientific Calculator 97

5.5.3.5 Coefficient of Variation 97

5.6 Normal Distribution Curve of a Sample 97

5.7 ChemTech Statistical Calculations 98

5.7.1 Introduction to ChemTech Statistics 98

5.7.2 ChemTech Chapter 5 98

5.7.2.1 Entering Data 100

5.7.2.2 Calculating the Statistics 100

5.7.2.3 The Results Output 100

5.7.2.4 Results not Expected 100

5.7.2.5 Using ChemTech for Large Value Set 101

5.7.2.6 The Results Page 101

5.7.2.7 Resetting the Page 101

5.8 Student s Distribution t Test for Confidence Limits 101

5.8.1 Accuracy 101

5.8.2 The Student s t Test 102

5.8.3 Calculating the Student s t Value 102

5.8.4 Probability Level 103

5.8.5 Sulfate Concentration Confidence Limits 103

5.8.6 Sulfate t Distribution Curve 103

5.8.7 Determining Types of Error 103

5.8.7.1 Glucose Content 104

5.8.8 Determining Error in Methodology 104

5.8.8.1 Magnesium Primary Standard 104

5.9 Tests of Significance 104

5.9.1 Difference in Means 104

5.9.2 Null Hypothesis 105

5.10 Treatment of Data Outliers 105

5.10.1 The Q Test 105

5.10.2 The Tn Test 106

5.11 Chapter Key Concepts 106

5.12 Chapter Problems 107

6 Plotting and Graphing 109

6.1 Introduction to Graphing 109

6.1.1 The Invention of the Graph 109

6.1.2 Importance of Graphing 109

6.2 Graph Construction 109

6.2.1 Axis and Quadrants 110

6.3 Rectangular Cartesian Coordinate System 110

6.4 Curve Fitting 110

6.5 Redrawn Graph Example 110

6.6 Graphs of Equations 111

6.6.1 Introduction 111

6.6.2 Copper Sulfate Data 111

6.6.3 Plotting the Data 111

6.6.4 Best Fit Line 111

6.6.5 Point–Slope Equation of a Line 112

6.6.6 Finding the Slope (m) 112

6.6.7 Finding the y–Intercept (b) 112

6.6.8 Solving for x 113

6.6.9 Estimating the Slope and Intercept 113

6.6.10 Deriving the Equation from the Slope and Intercept 113

6.7 Least–Squares Method 114

6.7.1 Plotting Data with Scatter 114

6.7.2 Linear Regression 114

6.7.3 Curve Fitting the Data 114

6.8 Computer–Generated Curves 115

6.8.1 Using ChemTech to Plot Data 115

6.8.2 Entering the Data 115

6.8.3 Plotting the Data 116

6.8.4 Linear Regression of the Data 116

6.8.5 Adding the Best Fit Line 118

6.8.6 Entering a Large Set of Data 118

6.9 Calculating Concentrations 119

6.10 Nonlinear Curve Fitting 119

6.11 Chapter Key Concepts 123

6.12 Chapter Problems 124

7 Using Microsoft Excel® in the Laboratory 125

7.1 Introduction to Excel® 125

7.2 Opening Excel® in ChemTech 125

7.3 The Excel® Spreadsheet 125

7.3.1 Spreadsheet Menus and Quick Access Toolbars 127

7.4 Graphing in Excel® 127

7.4.1 Making Column Headings 127

7.4.2 Entering Data into Columns 128

7.4.3 Saving the Spreadsheet 129

7.4.4 Constructing the Graph 129

7.4.5 The Chart Wizard 130

7.4.6 The Chart Source Data 130

7.4.7 Chart Options 131

7.5 Charts in Excel® 2010 132

7.6 Complex Charting in Excel® 97–2003 132

7.6.1 Calcium Atomic Absorption (AAS) Data 132

7.6.2 Entering Ca Data into Spreadsheet 135

7.6.3 Average and Standard Deviation 135

7.6.4 Constructing the Calibration Curve 135

7.6.5 Entering the Chart Options 136

7.6.6 Error Bars 137

7.6.7 Trendline 138

7.7 Complex Charting in Excel® 2010 139

7.7.1 Entering the Data 139

7.7.2 Using the Formula Search Function 139

7.7.3 Inserting the Chart 140

7.7.4 Formatting the Chart 140

7.8 Statistical Analysis Using Excel® 141

7.8.1 Open and Save Excel® StatExp.xls 141

7.8.2 Sulfate Data 141

7.8.3 Excel® Confidence Function 142

7.8.4 Excel® Student s t Test 142

7.8.4.1 Spreadsheet Calculation I 142

7.8.4.2 Spreadsheet Calculation II 143

7.8.5 Excel® Tools Data Analysis 143

7.8.5.1 Analysis ToolPak 143

7.8.5.2 ToolPak Functions 143

7.8.5.3 Data Analysis t–Test: Two–Sample Assuming Unequal Variances 144

7.8.5.4 Analysis ToolPak F–test 145

7.8.5.5 Analysis ToolPak Statistical Summary 145

8 Making Laboratory Solutions 147

8.1 Introduction 147

8.2 Laboratory Reagent Fundamentals 147

8.3 The Periodic Table 147

8.3.1 Periodic Table Descriptive Windows 148

8.4 Calculating Formula Weights 148

8.5 Calculating the Mole 148

8.6 Molecular Weight Calculator 148

8.7 Expressing Concentration 148

8.7.1 Formal (F) Solutions 149

8.7.1.1 Formal (F) Solution Example 149

8.7.2 Molal (m) Solutions 149

8.7.2.1 Molal (m) Solution Simple Example 149

8.7.2.2 Molal (m) Solution Complex Example 149

8.7.3 Molar (M) Solutions 150

8.7.3.1 Molar (M) Solution Example 150

8.7.3.2 Molar (M) Solution of K2CO3 151

8.7.4 Normal (N) Solutions 151

8.7.4.1 Normal (N) Solution Calculation Example 152

8.8 The Parts per (PP) Notation 153

8.9 Computer–Based Solution Calculations 153

8.9.1 Computer–Based Concentration Calculation Molarity I 154

8.9.2 Computer–Based Concentration Calculation Molarity II 154

8.9.3 Computer–Based Concentration Calculation Normality I 155

8.9.4 Computer–Based Concentration Calculation Normality II 156

8.10 Reactions in Solution 157

8.11 Chapter Key Concepts 157

8.12 Chapter Problems 158

9 Acid Base Theory and Buffer Solutions 159

9.1 Introduction 159

9.2 Acids and Bases in Everyday Life 159

9.3 The Litmus Test 159

9.4 Early Acid Base Descriptions 160

9.5 Br nsted Lowry Definition 160

9.6 The Equilibrium Constant 161

9.7 The Acid Ionization Constant 161

9.8 Calculating the Hydrogen Ion Concentration 162

9.9 The Base Ionization Constant 163

9.9.1 OH Ion Concentration Example 163

9.9.2 Percent Ionization Example 164

9.10 Ion Product for Water 164

9.11 The Solubility Product Constant (Ksp) 164

9.11.1 Solubility of Silver(I) Thiocyanate 164

9.11.2 Solubility of Lithium Carbonate 166

9.12 The pH of a Solution 166

9.13 Measuring the pH 167

9.13.1 The Glass Electrode 167

9.14 Buffered Solutions Description and Preparing 168

9.14.1 Le Chatelier s Principle 169

9.14.2 Titration Curve of a Buffer 169

9.14.3 Natural Buffer Solutions 169

9.14.4 Calculating Buffer pH 170

9.14.5 Buffer pH Calculation I 170

9.15 ChemTech Buffer Solution Calculator 170

9.16 Chapter Key Concepts 171

9.17 Chapter Problems 172

10 Titration A Volumetric Method of Analysis 175

10.1 Introduction 175

10.2 Reacting Ratios 175

10.3 The Equivalence Point 176

10.4 Useful Relationships for Calculations 176

10.5 Deriving the Titration Equation 176

10.5.1 Titration Calculation Example 176

10.6 Titrations in ChemTech 177

10.6.1 Acid/Base Titrations Using Molar Solutions 177

10.6.2 Titration Calculation Example 177

10.7 Acid/Base Titration Endpoint (Equivalence Point) 178

10.8 Acid/Base Titration Midpoint 179

10.9 Acid/Base Titration Indicators 180

10.9.1 The Ideal Indicator 180

10.10 Titrations Using Normal Solutions 181

10.10.1 Normal Solution Titration Example 181

10.11 Polyprotic Acid Titration 181

10.12 ChemTech Calculation of Normal Titrations 182

10.13 Performing a Titration 183

10.13.1 Titration Glassware 183

10.13.2 Titration Steps 183

10.14 Primary Standards 184

10.15 Standardization of Sodium Hydroxide 185

10.15.1 NaOH Titrant Standardization Example 185

10.16 Conductometric Titrations (Nonaqueous Solutions) 186

10.17 Precipitation Titration (Mohr Method for Halides) 188

10.17.1 Basic Steps in Titration 188

10.17.2 Important Considerations 189

10.18 Complex Formation with Back Titration (Volhard Method for Anions) 189

10.18.1 Iron(III) as Indicator 189

10.18.2 Chloride Titration 189

10.18.3 The General Calculation 189

10.18.4 Chloride Titration 190

10.18.4.1 Volhard Chloride Analysis Example 190

10.18.4.2 The Titration Steps 190

10.19 Complex Formation Titration with EDTA for Cations 190

10.19.1 EDTA Metal Ion Complex Formation 191

10.19.2 The Stability Constant 191

10.19.3 Metal Ions Titrated 191

10.19.4 Influence of pH 191

10.19.5 Buffer and Hydroxide Complexation 192

10.19.6 Visual Indicators 193

10.20 Chapter Key Concepts 194

10.21 Chapter Problems 195

11 Oxidation Reduction (Redox) Reactions 197

11.1 Introduction 197

11.2 Oxidation and Reduction 197

11.3 The Volt 198

11.4 The Electrochemical Cell 198

11.5 Redox Reaction Conventions 198

11.5.1 Electrode Potential Tables 198

11.5.2 The Standard Hydrogen Electrode (SHE) 199

11.5.3 The SHE Half–Reaction 199

11.5.4 Writing the Standard Electrode Potentials 199

11.5.5 Drawing a Galvanic Cell 199

11.5.6 Calculating the Cell Potential 200

11.5.6.1 Iron and Zinc Cell 200

11.5.6.2 Nickel and Silver Cell 200

11.6 The Nernst Equation 200

11.6.1 Nernst Equation Example I 201

11.6.2 Nernst Equation Example II 201

11.6.3 Nernst Equation Example III 201

11.7 Determining Redox Titration Endpoints 202

11.8 Potentiometric Titrations 202

11.8.1 Detailed Potentiometer 202

11.8.2 Half–Reactions 202

11.8.3 The Nernst Equation 203

11.8.4 Assumed Reaction Completion 203

11.8.5 Calculated Potentials of Ce4+ 204

11.9 Visual Indicators Used in Redox Titrations 204

11.10 Pretitration Oxidation Reduction 205

11.10.1 Reducing Agents 205

11.10.2 Oxidizing Agents 205

11.11 Ion–Selective Electrodes 206

11.12 Chapter Key Concepts 206

11.13 Chapter Problems 207

12 Laboratory Information Management System (LIMS) 209

12.1 Introduction 209

12.2 LIMS Main Menu 209

12.3 Logging in Samples 209

12.4 Entering Test Results 209

12.5 Add or Delete Tests 211

12.6 Calculations and Curves 212

12.7 Search Wizards 214

12.7.1 Searching Archived Samples 214

12.7.2 General Search 214

12.7.3 Viewing Current Open Samples 216

12.8 Approving Samples 218

12.9 Printing Sample Reports 220

13 Ultraviolet and Visible (UV/Vis) Spectroscopy 221

13.1 Introduction to Spectroscopy in the Analytical Laboratory 221

13.2 The Electromagnetic Spectrum 221

13.3 Ultraviolet/Visible (UV/Vis) Spectroscopy 221

13.3.1 Wave and Particle Theory of Light 222

13.3.2 Light Absorption Transitions 223

13.3.3 The Color Wheel 224

13.3.4 Pigments 224

13.3.5 Inorganic Elemental Analysis 224

13.3.6 The Azo Dyes 225

13.3.7 UV–Visible Absorption Spectra 228

13.3.8 Beer s Law 228

13.4 UV/Visible Spectrophotometers 230

13.5 Special Topic (Example) Spectrophotometric Study of Dye Compounds 234

13.5.1 Introduction 234

13.5.2 Experimental Setup for Special Topic Discussion 235

13.5.3 UV/Vis Study of the Compounds and Complexes 235

13.6 Chapter Key Concepts 236

13.7 Chapter Problems 237

14 Fluorescence Optical Emission Spectroscopy 239

14.1 Introduction to Fluorescence 239

14.2 Fluorescence and Phosphorescence Theory 240

14.2.1 Radiant Energy Absorption 240

14.2.2 Fluorescence Principle Jablonski Diagram 240

14.2.3 Excitation and Electron Spin States 240

14.2.3.1 Quantum Numbers 241

14.2.3.2 Electron Spin States 241

14.3 Phosphorescence 241

14.4 Excitation and Emission Spectra 242

14.5 Rate Constants 243

14.5.1 Emission Times 243

14.5.2 Relative Rate Constants (k) 243

14.6 Quantum Yield Rate Constants 243

14.7 Decay Lifetimes 244

14.8 Factors Affecting Fluorescence 244

14.8.1 Excitation Wavelength (Instrumental) 244

14.8.2 Light Source (Instrumental) 244

14.8.3 Filters, Optics, and Detectors (Instrumental) 245

14.8.4 Cuvettes and Cells (Instrumental) 245

14.8.5 Structure (Sample) 246

14.8.5.1 Fluorescein and Beta–( )–Carotene 246

14.8.5.2 Diatomic Oxygen Molecular Orbital Diagram 246

14.8.5.3 Examples of Nonfluorescent and Fluorescent Compounds 247

14.8.5.4 Other Structural Influences 247

14.8.5.5 Scattering (Sample) 248

14.9 Quantitative Analysis and Beer Lambert Law 248

14.10 Quenching of Fluorescence 249

14.11 Fluorometric Instrumentation 249

14.11.1 Spectrofluorometer 249

14.11.1.1 Light Source 250

14.11.1.2 Monochromators 250

14.11.1.3 Photomultiplier tube (PMT) 251

14.11.2 Multidetection Microplate Reader 252

14.11.3 Digital Fluorescence Microscopy 252

14.11.3.1 Light Source 252

14.11.3.2 Filter Cube 253

14.11.3.3 Objectives and Grating 253

14.11.3.4 Charged–Coupled Device (CCD) 254

14.12 Special Topic Flourescence Study of Dye–A007 Complexes 255

14.13 Chapter Key Concepts 257

14.14 Chapter Problems 258

15 Fourier Transform Infrared (FTIR) Spectroscopy 261

15.1 Introduction 261

15.2 Basic IR Instrument Design 261

15.3 The Infrared Spectrum and Molecular Assignment 263

15.4 FTIR Table Band Assignments 264

15.5 FTIR Spectrum Example I 270

15.6 FTIR Spectrum Example II 270

15.7 FTIR Inorganic Compound Analysis 271

15.8 Chapter Key Concepts 271

15.9 Chapter Problems 273

16 Nuclear Magnetic Resonance (NMR) Spectroscopy 277

16.1 Introduction 277

16.2 Frequency and Magnetic Field Strength 277

16.3 Continuous–Wave NMR 278

16.4 The NMR Sample Probe 280

16.5 Pulsed Field Fourier Transform NMR 280

16.6 Proton NMR Spectra Environmental Effects 280

16.6.1 Chemical Shift 281

16.6.2 Spin Spin Splitting (Coupling) 281

16.6.3 Interpretation of NMR Spectra 283

16.6.3.1 2–Amino–3–Methyl–Pentanoic Acid 283

16.6.3.2 Unknown I 283

16.7 Carbon–13 NMR 283

16.7.1 Introduction 283

16.7.2 Carbon–13 Chemical Shift 284

16.7.3 Carbon–13 Splitting 286

16.7.4 Finding the Number of Carbons 286

16.7.5 Carbon–13 NMR Examples 286

16.8 Special Topic NMR Characterization of Cholesteryl Phosphate 287

16.8.1 Synthesis of Cholesteryl Phosphate 288

16.8.2 Single–Stage and High–Resolution Mass Spectrometry 288

16.8.3 Proton Nuclear Magnetic Resonance (1H–NMR) 289

16.8.4 Theoretical NMR Spectroscopy 289

16.8.5 Structure Elucidation 289

16.9 Chapter Key Concepts 292

16.10 Chapter Problems 293

References 294

17 Atomic Absorption Spectroscopy (AAS) 295

17.1 Introduction 295

17.2 Atomic Absorption and Emission Process 295

17.3 Atomic Absorption and Emission Source 296

17.4 Source Gases and Flames 296

17.5 Block Diagram of AAS Instrumentation 296

17.6 The Light Source 297

17.7 Interferences in AAS 299

17.8 Electrothermal Atomization Graphite Furnace 299

17.9 Instrumentation 300

17.10 Flame Atomic Absorption Analytical Methods 301

18 Atomic Emission Spectroscopy 303

18.1 Introduction 303

18.2 Elements in Periodic Table 303

18.3 The Plasma Torch 303

18.4 Sample Types 304

18.5 Sample Introduction 304

18.6 ICP–OES Instrumentation 305

18.6.1 Radially Viewed System 306

18.6.2 Axially Viewed System 308

18.6.3 Ergonomic Sample Introduction System 309

18.6.4 Innovative Optical Design 310

18.6.5 Advanced CID Camera Technology 310

18.7 ICP–OES Environmental Application Example 310

19 Atomic Mass Spectrometry 325

19.1 Introduction 325

19.2 Low–Resolution ICP–MS 325

19.2.1 The PerkinElmer NexION® 350 ICP–MS 325

19.2.2 Interface and Quadrupole Ion Deflector (QID) 325

19.2.3 The Collision/Reaction Cell 325

19.2.4 Quadrupole Mass Filter 328

19.3 High–Resolution ICP–MS 328

20 X–ray Fluorescence (XRF) and X–ray Diffraction (XRD) 333

20.1 X–Ray Fluorescence Introduction 333

20.2 X–Ray Fluorescence Theory 333

20.3 Energy–Dispersive X–Ray Fluorescence (EDXRF) 334

20.3.1 EDXRF Instrumentation 334

20.3.1.1 Basic Components 334

20.3.1.2 X–Ray Sources 334

20.3.1.3 Detectors 335

20.3.2 Commercial Instrumentation 337

20.4 Wavelength Dispersive X–Ray Fluorescence (WDXRF) 337

20.4.1 Introduction 337

20.4.2 WDXRF Instrumentation 338

20.4.2.1 Simultaneous WDXRF Instrumentation 338

20.4.2.2 Sequential WDXRF Instrumentation 340

20.5 Applications of XRF 341

20.6 X–ray Diffraction (XRD) 342

20.6.1 Introduction 342

20.6.2 X–Ray Crystallography 344

20.6.3 Bragg s Law 345

20.6.4 Diffraction Patterns 345

20.6.5 The Goniometer 346

20.6.6 XRD Spectra 346

21 Chromatography Introduction and Theory 351

21.1 Preface 351

21.2 Introduction to Chromatography 351

21.3 Theory of Chromatography 351

21.4 The Theoretical Plate Number N 355

21.5 Resolution RS 356

21.6 Rate Theory versus Plate Theory 357

21.6.1 Multiple Flow Paths or Eddy Diffusion (A Coefficient) 358

21.6.2 Longitudinal (Molecular) Diffusion (B Coefficient) 359

21.6.3 Mass Transfer Resistance between Phases (CS and CM Coefficients) 361

21.7 Retention Factor k  361

References 362

22 High Performance Liquid Chromatography (HPLC) 363

22.1 HPLC Background 363

22.2 Design and Components of HPLC 363

22.2.1 HPLC Pump 366

22.2.2 HPLC Columns 368

22.2.2.1 HPLC Column Stationary Phases 368

22.2.3 HPLC Detectors 372

22.2.4 HPLC Fraction Collector 374

22.2.5 Current Commercially Available HPLC Systems 375

22.2.6 Example of HPLC Analyses 375

22.2.6.1 HPLC Analysis of Acidic Pesticides 375

23 Solid–Phase Extraction 381

23.1 Introduction 381

23.2 Disposable SPE Columns 381

23.3 SPE Vacuum Manifold 381

23.4 SPE Procedural Bulletin 381

24 Plane Chromatography: Paper and Thin–Layer Chromatography 395

24.1 Plane Chromatography 395

24.2 Thin–Layer Chromatography 395

24.3 Retardation Factor (RF) in TLC 398

24.3.1 Example I 398

24.3.2 Example II 398

24.4 Plate Heights (H) and Counts (N) in TLC 398

24.5 Retention Factor in TLC 399

25 Gas–Liquid Chromatography 401

25.1 Introduction 401

25.2 Theory and Principle of GC 401

25.3 Mobile–Phase Carrier Gasses in GC 403

25.4 Columns and Stationary Phases 404

25.5 Gas Chromatograph Injection Port 406

25.5.1 Injection Port Septa 407

25.5.1.1 Merlin Microseal 407

25.5.2 Injection Port Sleeve (Liner) 408

25.5.2.1 Attributes of a Proper Liner 409

25.5.3 Injection Port Flows 412

25.5.4 Packed Column Injection Port 412

25.5.5 Capillary Column Split Injection Port 414

25.5.6 Capillary Column Splitless Injection Port 414

25.6 The GC Oven 415

25.7 GC Programming and Control 417

25.8 GC Detectors 418

25.8.1 Flame Ionization Detector (FID) 418

25.8.2 Electron Capture Detector (ECD) 418

25.8.3 Flame Photometric Detector (FPD) 419

25.8.4 Nitrogen Phosphorus Detector (NPD) 419

25.8.5 Thermal Conductivity Detector (TCD) 420

26 Gas Chromatography Mass Spectrometry (GC MS) 421

26.1 Introduction 421

26.2 Electron Ionization (EI) 421

26.3 Electron Ionization (EI)/OE Processes 422

26.4 Oleamide Fragmentation Pathways: OE M+ by Gas Chromatography/Electron Ionization Mass Spectrometry 425

26.5 Oleamide Fragmentation Pathways: EE [M+H]+ by ESI/Ion Trap Mass Spectrometry 426

26.6 Quantitative Analysis by GC/EI MS 429

26.7 Chapter Problems 431

References 433

27 Special Topics: Strong Cation Exchange Chromatography and Capillary Electrophoresis 435

27.1 Introduction 435

27.1.1 Overview and Comparison of HPLC and CZE 435

27.2 Strong Ion Exchange HPLC 435

27.3 CZE 435

27.3.1 Electroosmotic Flow (EOF) 436

27.3.2 Applications of CZE 436

27.4 Binding Constants by Cation Exchange and CZE 436

27.4.1 Ranking of Binding Constants 436

27.4.2 Experimental Setup 436

27.4.3 UV/Vis Study of the Compounds and Complexes 437

27.4.4 Fluorescence Study of the Dye/A007 Complexes 438

27.4.5 Computer Modeling of the Complex 438

27.4.6 Cation Exchange Liquid Chromatography Results 440

27.4.6.1 Description of HPLC Pseudophase 441

27.4.7 Capillary Electrophoresis (CE) 441

27.4.7.1 Introduction 441

27.4.7.2 CE Instrumentation 441

27.4.7.3 Theory of CE Separation 441

27.4.7.4 Results of CE Binding Analysis of Dyes and A007 441

27.4.7.5 Electropherograms of Dye/A007 Complexes 446

27.5 Comparison of Methods 446

27.6 Conclusions 448

References 448

28 Mass Spectrometry 449

28.1 Definition and Description of Mass Spectrometry 449

28.2 Basic Design of Mass Analyzer Instrumentation 449

28.3 Mass Spectrometry of Protein, Metabolite, and Lipid Biomolecules 451

28.3.1 Proteomics 451

28.3.2 Metabolomics 452

28.3.3 Lipidomics 454

28.4 Fundamental Studies of Biological Compound Interactions 455

28.5 Mass–to–Charge (m/z) Ratio: How the Mass Spectrometer Separates Ions 457

28.6 Exact Mass versus Nominal Mass 458

28.7 Mass Accuracy and Resolution 460

28.8 High–Resolution Mass Measurements 461

28.9 Rings Plus Double Bonds (r + db) 463

28.10 The Nitrogen Rule in Mass Spectrometry 464

28.11 Chapter Problems 465

References 465

29 Ionization in Mass Spectrometry 467

29.1 Ionization Techniques and Sources 467

29.2 Chemical Ionization (CI) 467

29.2.1 Positive CI 468

29.2.2 Negative CI 470

29.3 Atmospheric Pressure Chemical Ionization (APCI) 471

29.4 Electrospray Ionization (ESI) 472

29.5 Nanoelectrospray Ionization (Nano–ESI) 474

29.6 Atmospheric Pressure Photo Ionization (APPI) 477

29.6.1 APPI Mechanism 478

29.6.2 APPI VUV Lamps 478

29.6.3 APPI Sources 478

29.6.4 Comparison of ESI and APPI 479

29.7 Matrix Assisted Laser Desorption Ionization (MALDI) 483

29.8 FAB 485

29.8.1 Application of FAB versus EI 487

29.9 Chapter Problems 489

References 489

30 Mass Analyzers in Mass Spectrometry 491

30.1 Mass Analyzers 491

30.2 Magnetic and Electric Sector Mass Analyzer 491

30.3 Time–of–Flight Mass Analyzer (TOF/MS) 496

30.4 Time–of–Flight/Time–of–Flight Mass Analyzer (TOF TOF/MS) 497

30.5 Quadrupole Mass Filter 500

30.6 Triple Quadrupole Mass Analyzer (QQQ/MS) 502

30.7 Three–Dimensional Quadrupole Ion Trap Mass Analyzer (QIT/MS) 503

30.8 Linear Quadrupole Ion Trap Mass Analyzer (LTQ/MS) 506

30.9 Quadrupole Time–of–Flight Mass Analyzer (Q–TOF/MS) 507

30.10 Fourier Transform Ion Cyclotron Resonance Mass Analyzer (FTICR/MS) 508

30.10.1 Introduction 508

30.10.2 FTICR Mass Analyzer 509

30.10.3 FTICR Trapped Ion Behavior 509

30.10.4 Cyclotron and Magnetron Ion Motion 515

30.10.5 Basic Experimental Sequence 515

30.11 Linear Quadrupole Ion Trap Fourier Transform Mass Analyzer (LTQ FT/MS) 517

30.12 Linear Quadrupole Ion Trap Orbitrap Mass Analyzer (LTQ Orbitrap/MS) 518

30.13 Chapter Problems 527

References 527

31 Biomolecule Spectral Interpretation: Small Molecules 529

31.1 Introduction 529

31.2 Ionization Efficiency of Lipids 529

31.3 Fatty Acids 530

31.3.1 Negative Ion Mode Electrospray Behavior of Fatty Acids 532

31.4 Wax Esters 537

31.4.1 Oxidized Wax Esters 538

31.4.2 Oxidation of Monounsaturated Wax Esters by Fenton Reaction 538

31.5 Sterols 542

31.5.1 Synthesis of Cholesteryl Phosphate 542

31.5.2 Single–Stage and High–Resolution Mass Spectrometry 543

31.5.3 Proton Nuclear Magnetic Resonance (1H–NMR) 543

31.5.4 Theoretical NMR Spectroscopy 544

31.5.5 Structure Elucidation 544

31.6 Acylglycerols 548

31.6.1 Analysis of Monopentadecanoin 548

31.6.2 Analysis of 1,3–Dipentadecanoin 548

31.6.3 Analysis of Triheptadecanoin 550

31.7 ESI–Mass Spectrometry of Phosphorylated Lipids 551

31.7.1 Electrospray Ionization Behavior of Phosphorylated Lipids 551

31.7.2 Positive Ion Mode ESI of Phosphorylated Lipids 553

31.7.3 Negative Ion Mode ESI of Phosphorylated Lipids 556

31.8 Chapter Problems 556

References 557

32 Macromolecule Analysis 559

32.1 Introduction 559

32.2 Carbohydrates 559

32.2.1 Ionization of Oligosaccharides 561

32.2.2 Carbohydrate Fragmentation 561

32.2.3 Complex Oligosaccharide Structural Elucidation 564

32.3 Nucleic Acids 565

32.3.1 Negative Ion Mode ESI of a Yeast 76–mer tRNAPhe 569

32.3.2 Positive Ion Mode MALDI Analysis 573

32.4 Chapter Problems 576

References 577

33 Biomolecule Spectral Interpretation: Proteins 579

33.1 Introduction to Proteomics 579

33.2 Protein Structure and Chemistry 579

33.3 Bottom–up Proteomics: Mass Spectrometry of Peptides 580

33.3.1 History and Strategy 580

33.3.2 Protein Identification through Product Ion Spectra 584

33.3.3 High–Energy Product Ions 587

33.3.4 De Novo Sequencing 587

33.3.5 Electron Capture Dissociation 589

33.4 Top–Down Proteomics: Mass Spectrometry of Intact Proteins 590

33.4.1 Background 590

33.4.2 GP Basicity and Protein Charging 591

33.4.3 Calculation of Charge State and Molecular Weight 592

33.4.4 Top–Down Protein Sequencing 593

33.5 PTM of Proteins 594

33.5.1 Three Main Types of PTM 594

33.5.2 Glycosylation of Proteins 594

33.5.3 Phosphorylation of Proteins 596

33.5.3.1 Phosphohistidine as PTM 602

33.5.4 Sulfation of Proteins 608

33.5.4.1 Glycosaminoglycan Sulfation 608

33.5.4.2 Tyrosine Sulfation 609

33.6 Systems Biology and Bioinformatics 614

33.6.1 Biomarkers in Cancer 616

33.7 Chapter Problems 618

References 619

Appendix I: Chapter Problem Answers 621

Appendix II: Atomic Weights and Isotopic Compositions 627

Appendix III: Fundamental Physical Constants 631

Appendix IV: Redox Half Reactions 633

Appendix V: Periodic Table of Elements 637

Appendix VI: Installing and Running Programs 639

Index 641

Winkelvoorraad

Dit product is op dit moment niet op voorraad in een van onze vestigingen.