Deze website maakt gebruik van cookies. Klik hier voor meer informatie.X sluit
Uitgebreid zoeken
Boek

Infectious Disease And Host-pathogen Evolution

Infectious Disease And Host-pathogen Evolution - ISBN: 9780521820660
Prijs: € 131,05 (onder voorbehoud)
Beschikbaarheid: Titel is niet in voorraad. Levertijd onbekend.
Bindwijze: Boek, Gebonden
Genre: Anatomie en fysiologie
Boekenliefde.nl:
Add to cart

Beschrijving

It has long been recognized that an important factor in human evolution has been the struggle against infectious disease. From the historical beginnings of Haldane’s original hypothesis to current research, this book strives to evaluate infectious diseases from an evolutionary perspective. It provides a survey of the latest information related to major infections, such as malaria, influenza and leishmaniasis. Written by leading authorities in the field, this unique reference will appeal to those working in microbiology, parasitology, immunology and infectious disease medicine, as well as genetics, evolutionary biology and epidemiology.

Details

Titel: Infectious Disease And Host-pathogen Evolution
Mediatype: Boek
Bindwijze: Gebonden
Taal: Engels
Aantal pagina's: 396
Uitgever: Cambridge University Press
Plaats van publicatie: 01
NUR: Anatomie en fysiologie
Editor: Dronamraju, Krishna R.
Afmetingen: 234 x 161 x 24
Gewicht: 658 gr
ISBN/ISBN13: 0521820669
ISBN/ISBN13: 9780521820660
Intern nummer: 6484451

Extra informatie

Infectious Disease and Host–Pathogen Evolution
Cambridge University Press
0521820669 - Infectious Disease and Host–Pathogen Evolution - Edited by Krishna R. Dronamraju
Index
More information


Index

Africa, 130, 315

   Cameroon, 95

   diabetes, 333–334, 336

   Duffy blood group, 26, 46

   Eastern, 26, 241

   Egypt, 254

   G6PD, 26, 121, 124

   Gambia, 95

   Hb C, 20, 22

   Hb S/sickle-cell allele, 20, 21, 22, 29

   HIV/AIDS, 30, 319

   ICAM-1, 27

   Kenya, 27, 95, 241

   Madagascar, 147

   malaria, 3, 27, 46, 58, 86, 95, 147, 320

   mortality rates, 3

   Northern, 20

   RFLP haplotype analysis, 121

   schistosome infections, 254, 255

   Senegal, 95

   sub-Saharan, 20–21, 30, 46

   Sudan, 241, 244, 255

   Tanzania, 333–334

   temperature/climate changes, 132

   thalassemias, 20–21

   tropical, 58

   Visceral leishmaniasis, 241, 244

   Western, 20, 26, 27, 147, 150, 153, 320

African-Americans, 321, 332

   diabetes, 332

   Duffy. See Duffy blood group

   malaria, 320

   malariatherapy, 145

agriculture, 30, 57, 58, 132, 133, 134, 160, 178, 326, 327, 337, 348

Alexander the Great, 133

allozymes, 47, 48, 226–227

Alzheimer’s disease, 338

American continents

   African-Americans. See African-Americans

   Amerindians, 335, 336, 337

   Brazil, 95, 96, 254, 255

   Canada, 147

   Central America, 29, 147

   Chagas disease, 315–316

   Chile, 333–334

   diabetes, 332, 333–334, 335–336, 337

   diabetes mellitus, 330

   heterozygote advantage, 12

   HIV/AIDS, 319

   HLA diversity and, 337

   influenza mortalities, 181

   Latin America, 315–316

   malaria, 86, 147

   Mexico, 335

   New World Syndrome, 337

   North America, 147, 319

   parasite population diversity, 95, 96

   Pima Indians, 333–334, 335–336

   schistosome infections, 254, 255

   South America, 29, 46, 95, 147, 150, 241

   trypanosomes, 315–316

   tuberculosis, 315

   United States, 12, 181, 330, 332, 337

   Venezuela, 95, 96

   Visceral leishmaniasis, 241

   See also ethnicities; specific hosts, parasites

antigen genes, 189

   drift, 179, 186

   genetic variation/polymorphisms, 48, 49, 55, 58, 189–190, 293

   influenza, 179, 186, 189–190

   mutation rates, 55

   natural selection, and the evolution of, 58

   P. falciparum, 48, 58

   phylogenetic studies, 77

   shift, 179

   See also specific antigens

Apical Membrane Antigen 1 (AMA-1), 88, 89

   B and T cell epitopes, 89, 90, 92

   distribution of, 95

   Ks/Kn, 89

   polymorphisms in, 90, 91

Apicomplexa phylum, 39–40, 77, 78, 79

apoptosis, 175

arthropods, 230

Asia

   China, 181, 182, 188, 331, 332

   diabetes, 331, 332, 333–334, 336

   G6PD, 120, 122, 125, 131

   Hb E, 20, 21, 29

   Hb S/sickle-cell allele, 20, 21, 29

   HLA diversity and, 337

   Indian subcontinent, 20, 21, 29, 95, 120, 241, 333–334, 336

   influenza, 178, 181, 182, 183, 188

   Japan, 332

   malaria, 267

   Melanesia, 20, 23, 320

   Middle East, 20–21, 29, 58, 120, 122, 125, 131

   Myanmar, 45

   P. falciparum, 58, 86

   P. vivax, 146, 147, 150

   parasite population diversity, 95

   phylogeny trees, parasites, 80

   Plasmodium falciparum, 86

   primate malarias, 100

   sickle-cell gene, 21, 29

   Singapore, 310

   Southeastern, 20, 23, 29, 80, 86, 95, 100, 147, 178, 181, 183

   Sri Lanka, 267

   Thailand, 95, 146

   thalassemias, 20–21, 22–23, 162

   V. leishmaniasis, 241

Australia/Pacific Islands

   aborigines, 333–334, 336, 337

   diabetes, 333–334, 336, 337

   G6PD, 26–28

   HLA system, 337

   holoenemic malaria, 25

   malaria, 320

   New Caledonia, 22–23

   P. vivax, 147

   Papua New Guinea, 21, 22–23, 320

   thalassemias, 20, 21, 22–23, 25

   Vanuata, 25, 26–28, 162

   See also myxoma virus

avian parasites, 78, 80, 83

   poultry markets, 179, 191

   See also influenza; Marek’s Disease Virus

Ayala, F.J., 39

balancing selection, 58, 59

   defined, 58

   G6PD and, 116, 128, 130

   malaria and, 319

   model of, 118

   Msp-1 alleles and, 67

   See also diversifying selection; frequency dependent selection

base composition convergence. See codon bias selection

bilharziosis, 309, 315

blood groups, 148, 307, 308–309, 348

Bordetella pertussis, 284

bubonic plague, 329

Bush, R.M., 175

cancer, 301, 308, 328, 348

Cavalli-Sforza, L.L., 343

CD36, 27

Chaudhuri, Asok, 154

Chagas disease, 315–316

chromosomes, 47, 48

   See also glucose-6-phosophate-dehydrogenase; specific chromosomes

circumsporozoite protein (Csp) alleles, 39, 41, 56, 60–64, 66, 88, 92

   central region, 60, 61

   codon bias selection, 56

   epitopes and, 94

   fast evolving repeats and, 100

   gene-structure diagram of, 60

   geographical distribution, 95–96

   length variation, 62

   linkage/recombination events in, 94

   nucleotide seqences of, 41–43, 44

   origins of, 58

   phylogeny trees, 4, 41–43, 60, 78, 79

   repeat allotype model, 62–64

   slipped-strand mutations, 62–64

   SNPs, lack of, 93

   SSU rRNA, 78

   vaccines, 60–64, 95

coalescence analysis, 129, 319, 322

   G6PD, 128, 129

   nucleotide variability, 39, 129, 130–131

Cochran, K.D., 325

Cochran, G.M., 325

codon bias selection, 49, 56–57, 88, 89, 94

   cytochrome b, 79

   Drosophila, 12

   EBNA-1, 56

   malarial parasites and, 50, 55, 56

   Malaria’s Eve Hypothesis, 55

   purine content skew, 56

   synonymous/nonsynonymous substitutions, 50

   tryptophan scarcity and, 12

color-blindness, 114, 120

Colwell, R.R., 198

computer models/software, 222, 294, 300, 301

Cox, N.J., 175

coxsackie B viruses, 333, 338–339

cross-immunity, 30, 146

   D. Magna, 231–233

   influenza, 181, 189

   malarial parasites, 25, 146–147, 162

   vaccines, 25, 147

Crow, J.F., 11

cultural evolution, 5

   agriculture, 348

   cultural selection, 343

   culture, defined, 343

   genetic evolution, contrasted, 343

   genetic evolution, influenced by, 345, 347

   HIV/AIDS, 349, 350

   human origins, 345

   language, 344, 345–347

   malaria susceptibility, 27

   mitochondrial DNA, 347

   mutations, 343, 344

   population density, 349

   rate of, 345

   transmission, 344

   Y chromosome, 347

cystic fibrosis, 122, 326

cytokines

   host susceptibility/resistance, 27, 28

   inflammation, 293, 296

   malaria, 27

   Schistosoma mansoni, 29, 251

   See also specific molecules

Daphnia, 5, 222, 224–225, 230

   clonal frequencies, 225

   cross-immunity, 231–233

   dose to establish infections, 224

   fitness, measurement of, 233

   frequency dependent selection, 226

   G. intestinalis coevolution, 225, 234

   genetic variation, 226–227, 230, 231

   host behavioral traits, 229

   host sterility, 231

   infectivity, 233

   Leishmaniasis, 5

   local host adaptation, 224

   migration rates, 224–225

   models of, 229

   P. ramosa coevolution, 225, 227–228, 229, 231–233

   parasite gene variation, 233

   population variation, among, 224

   population variation, within, 225

   reinfection study, 227–228

   resistance/susceptibility, 226–227, 228, 229

   schistosomiasis, 5

   sexual/asexual reproduction of, 223, 226–227

   temperature fluctuations, 235

   virulence evolution, 234

demographic sweeps, 49, 51–52, 57, 67.

      See also population bottlenecks

Dessein, A., 241

diabetes mellitus, 325–339

   agriculture, 326

   complications of, 330

   epidemiology of, 325

   etiology of, 5, 325–330, 339

   fitness loads, 329, 330

   fitness measures, 325

   geographical distribution of, 330

   history of, 330

   HLA system, 326, 337

   infection-causation explanations, 325, 332

   Mendelian genetic diseases, 329

   mortality from, 330

   treatments for, 331

   twin studies of, 329

   virulence evolution and, 325–326

diabetes mellitus type 1 (T1DM), 326, 333

   autoimmune response, 333

   clinical presentation of, 330–331

   cow’s milk, 333

   coxsackie B viruses, 333, 338–339

   diet/exercise/obesity, 332

   epidemiology of, 331

   etiology of, 332

   fitness loads, 332, 338

   geographical distribution of, 331, 332

   HLA system, 331–332, 338–339

   human CMV, 333

   infectious-causation explanations, 327, 332, 333, 338

   island populations, 333

   mumps/measles/rubella, 333

   post-epidemic rises in, 331

   seasonality, 331, 333

   symptoms of, 331

   twin studies on, 331, 332

   vaccines, 338–339

   viral infections and onset of, 333

diabetes mellitus type 2 (T2DM), 337

   age of onset, decrease in, 337

   amylin, 334, 338

   autoimmunity, 333

   clinical presentation of, 331

   diet/exercise/obesity, 327, 332, 333, 334, 336, 338, 339

   epidemiology of, 333

   ethnicity and, 339

   etiology of, 336

   familial effects, 334

   fitness loads, 335, 339

   genetic-mutations/diseases, 336

   geographical distribution of, 333–334, 335, 336, 337

   hearing loss, 335

   hepatitis, 338, 339

   HLA diversity and, 337, 339

   infectious-causation explanations, 336, 337, 339

   inflammatory markers and, 337–338

   insulin resistance, 333

   isolated-populations and, 337, 339

   liver and, 337, 338

   maturity-onset diabetes of the young (MODY) syndrome, 335

   mitochondrial mutations and, 335

   New World Syndrome, 337

   NIDDM nuclear genes, 335

   pancreatic beta cells, 333

   super-gene GM alleles, 335

   thrifty-genotype hypothesis, 336

   twin studies, 334–335, 339

   urbanization and, 334

diphtheria, 284, 285

disease severity

   co-infections and, 130

   defined, 265

   diet/exercise/obesity, 130

   environmental factors and, 267, 315

   G6PD and, 130

   genetic diversity and, 315

   host factors for, 267

   malaria and, 267, 268

   triggers for, 130

   variance analysis of, 267

   virulence evolution and, 266, 267

diseases, 11

      See also specific diseases, pathogens

   classifications as multifactorial, 328

   definition of, 84

   environmentally caused, 327

   genetic diseases. See Mendelian genetic diseases

   infectious causation of. See infectious causation

   Mendelian genetic diseases, 328–329

   reservoirs, 47

diversifying selection

   TCP pathogenicity islands and, 207

   V. cholerae and, 207

   See also balancing selection; frequency dependent selection

DNA chips/microarrays, 301, 316

Dronamraju, K.R., 1

Drosophila, 2, 12, 50, 88, 230, 317

drug resistance, 3, 48, 49, 85, 86, 101, 102–103

   adamantanes, 191–192

   group selection, 317

   influenza viruses, 191–192

   low-transmission regions/seasons, 102

   malarial parasites, 48, 50, 103, 143, 144, 145, 269, 280

   neuraminidase-inhibiting drugs, 191–192

   research, interdisciplinary, 76

   tuberculosis, 315

Duffy blood group, 5, 26, 46, 148, 295, 310

   Africa, 26, 46

   African-Americans, 141, 145, 151–153

   antigen/chemokine genes (FY), 26, 30, 113

   cell biology and, 156

   cerebellum Purkinje cells, 156

   chemokine-receptor function, 156

   Duffy binding protein, 157

   geographic distributions of, 26, 46, 150, 153, 154–156, 161, 162

   IL-8, 157

   malariatherapy, 141, 142, 143, 152

   melanoma growth stimuluating activity, 157, 158

   neurosyphilis, 141, 142

   nomenclature for, 149

   P. falciparum, 46, 153

   P. knowlesi, 46, 151, 152–153, 157–158, 159

   P. vivax, 5, 141–152, 157, 163

   phylogeny trees, 80–83

   polymorphisms/serology of, 159, 161

   protein structure of, 155

Ebert, D., 222

E. coli, lateral gene-transfer, 212

echinococcus infections, 309

electrophoresis mobility shift assay (EMSA), 294, 297, 303

emerging/reemerging infectious diseases (ERID), 315

England-Wales, 148, 280

environmental factors, 327

   between-groups variation and, 311

   diet, 327

   disease expression and, 227–228

   disease severity, 267, 315

   environmental noise and, 227–228

   genetic epidemiology, 311

   malaria and, 27, 267

   temperature effects, 235

   transmission and, 315

eosinophilia, 309

Epstein-Barr Nuclear Antigen-1 (EBNA-1), 56

Escalente, A.A., 75

ethical issues, 275, 280

ethnic groups, 317

   African-Americans. See African-Americans

   Amerindian, 150, 319

   Caucasian, 311

   diabetes, 339

   genetic exchanges between, 311, 317

   Kurdish Jews, 118

   linkage disequilibrium, 311, 312

   local selection and, 319

   phylogeny trees of, 318

   schistosomiasis and, 311

   urbanization and, 339

   V. leishmaniasis, 244

   See also specific global regions

Europe, 2, 12, 22, 120, 147, 311, 315, 319

   diabetes, 331, 332, 333–334, 335, 337

   Finland, 332, 335

   G6PD deficiency, 120, 122, 125, 131

   HIV/AIDS, 319

   Mediterranean region, 2, 18, 20, 57, 58, 120, 122, 125, 131, 133, 147, 241

   Norwegians, 332

   P. falciparum, 57, 58, 133

   P. vivax, 147

   Sardinia, 332

   thalassemias, 18, 20

   V. leishmaniasis, 241

   Western, 319

evolution

   gene flow/selection combinations, 134

   genetic epidemiology, 307

   host-parasites, 11

   nucleotide substitution patterns, 294

   parsimony arguments based on, 45

   rates of, 11, 134, 177, 188–189, 277

   time scale for, 294

   virulence evolution, 277

exons, 120

experimental evolution, 234

fava beans, 114

Fisher, R.A, 1

fitness measures, 233, 325, 329–330

   fitness loads, 329–330, 332, 335, 338, 339

frequency dependent selection, 12, 226, 227, 229, 235

gene transfers, host-to-parasite, 301

gene transfers, parasite-to-host, 303

genetic distances, measurements of, 317, 322

genetic drift, 104, 124

genetic epidemiology, 307

genetic reassortment, 177, 178, 179, 181, 182, 189

genetic variation, polymorphisms, 86, 87, 88, 224, 229, 230, 254, 293, 294

   balanced polymorphism, 320, 322

   between-groups, 319

   chance processes, 102

   clonal expansions and, 102

   disease severity, 315

   distribution of, 317

   host resistance factors, 28

   host-switch directions, 47

   P. falciparum, 48

   parasites, 76

   population bottlenecks, 96

   transmission, 315

   virulence evolution model, 5

   within-groups, 319

   See also strain approach; specific processes

genome databases/projects, 27, 236, 269

   Anopheles gambiae, 3, 47

   GenBank database, 54, 64, 191

   gene maps, 1, 248, 255, 312

   Human Genome Diversity Project, 321, 322

   Human Genome Project, 267, 321, 322

   Los Alamos Influenza Database, 191

   P. falciparum, 53

   Plasmodium species, 75

genome informatics, 294, 303, 316

glucose-6-phosophate-dehydrogenase (G6PD), 4, 26, 28, 30, 113, 115, 120, 124, 125–127, 128, 129, 130, 295

   A variant, 117–118

   A-variant, 117–118, 123, 124–130, 131

   age-estimate comparisons, 126

   agriculture, 57

   allele origins, 130–131

   anemia, 113

   B variant, 114, 117

   balancing selection, 116, 128, 130

   chimpanzees, 117, 129, 130

   clinical disorders of, 113–114

   coalescence analysis of, 128, 129, 130–131

   deficiency, rates of, 113

   disease severity, triggers for, 130

   environmental factors, toxicity, 116

   epistatic gene interactions, 134

   evolutionary history of, 29, 120–121, 124, 131

   fava beans, 114

   gene structure diagram of, 117

   genetic drift and, 124

   geographical distribution of, 114, 115, 120, 133–135

   glucose metabolism, 113

   Hb C, 134

   HLA system, 134

   In/Del polymorphisms, 121

   Kurdish Jews, 118

   lineages simulation test, 128

   linkage disequilibrium, 121, 123, 124, 125, 127, 128, 130

   longevity of hosts, 113

   malarial resistance of, 113–116, 130, 135

   mechanism of resistance unknown, 116

   Med variant, 114, 118, 120, 122, 123, 125–130, 131, 133, 134

   microsatellites, 121, 123, 127, 130, 131

   mitochondrial DNA, 134

   mutations, classes of, 114

   mutations, table of, 115

   mutations/variants, number of, 114, 115

   NADPH, 113

   nucleotide diversity, 127, 129, 130–131

   nucleotide sequencing approach, 127

   oxidative stress, 113, 116

   phagocytosis, 116

   RFLP analyis, 118, 119, 121, 130, 131

   sex differences, 26, 116, 130

   sickle-cell, 134

   silent site variation, 128

   single nucleotide polymorphisms (SNPs), 115, 121, 125, 127, 128

   thalassemias, 134

   tumor necrosis factor, 134

   X chromosome, 114, 120, 124, 130

   Y chromosome, 134

glucose-intolerance genetic diseases, 335.

      See also diabetes mellitus; glucose-6-phosophate-dehydrogenase

gonorrhea, 309

group/multilevel selection, 317, 322.

      See also strain approach

group vs individual levels, 102, 320, 322

hemoglobin variants, 20, 30

   Hb C, 20, 22, 24, 134

   Hb E, 20, 21, 29

   Hb S. See sickle-cell gene

   mechanisms of protection, 22, 24–25

   protection mechanisms, 24–25

   in vitro invasion studies, 24–25

   See also specific diseases

Haldane, J.B.S, 1, 2, 3, 24, 26, 31, 222

   arms races, 222

   balancing selection, 116, 222

   The Causes of Evolution, 2, 11

   Disease and Evolution, 1, 12

   disease theory, 11, 236

   frequency dependent selection, 222, 227

   G6PD deficiency, 116

   heterozygote advantage, 2–4

   malaria, 2, 18, 307

   New Paths in Genetics, 15

   parasites, 2, 222, 319

   sexual reproduction, 222

   virulence evolution, 222

   web sites, 16

   What is Life, 15

   works by, partial listing of, 14–16

Hamilton, 13, 329–330

heart/cardiovascular system, 294, 295, 308, 309, 328, 338, 348

hemagglutinin esterase (HE), 175

Hemophilius influenzae. See influenza viruses

hepatitis, 28, 29, 273, 319

   diabetes, 338, 339

Hepatocystis genus, 83

herpes virus, 301

heterosis, 12

heterozygote advantage, 2, 3–4, 12, 13, 88, 320

   Drosophila, 2

   host-parasite coevolution, 326

   iron-deficient diets and, 12

hitchhiking effect, 88, 118, 119, 226–227, 295, 296, 297

HIV/AIDS, 30, 315

   chemokine receptor 5 (CCR5), 28, 121, 131, 310, 311, 319

   cultural evolution and, 349, 350

   fitness load measurement of, 329

   geographical differences, 319

   HLA/DR gene complex, 28

   linkage decay rates, 121

   mortality rates, 3

   phylogeny trees, 188

   vaccines, 273

host behavioral traits, 229

host–parasite coevolution, 12, 222, 228, 230–231, 267, 300, 316, 319, 322, 326

   allelic cycling, 222

   arthropods, 230

   computer simulations of, 222

   defined, 223

   diabetes mellitus, 326

   diversity of antigens, 29

   evolution rates, 11

   genetic variation and, 224, 230

   heterozygote advantage, 326

   host longevity, 234

   host-parasite specificity, 228

   host polymorphism, 43, 45

   migration rates, relative, 224

   plants, 230

   sickle-cell gene, 326

   See also virulence evolution; specific species

host–parasite predation trade-offs, 229

host-switching, 45, 47, 77, 80–83

HTLV-1 infection, 296

Hughes model, 58–67

human cytomegalovirus (CMV), 333

human leukocyte antigen (HLA) system, 28, 113, 310, 319, 320, 321, 322, 326.

      See also promoters

   diabetes, 326, 331–332, 337, 338–339

   diversity, geographical distribution of, 337

   G6PD, 134

   major histocompatibility complex (MHC), 27, 293, 296, 297

   malaria, susceptibility to, 27

   P. falciparum, 31

   Schistosoma mansoni, 252, 253, 254

   V. leishmaniasis, 244

   vaccines, 31

   venereal diseases, 310

   See also promoters

human origins, 133, 319, 345

immune-selection, 76, 87, 88, 92, 98, 101, 104

   genetic drift vs, 104

   influenza viruses, 189

   TCP pathogenicity island, 207

immune system, 88, 293, 307

   age of host and, 247

   autoimmunity, 296, 333, 338–339

   B and T cell epitopes, 59, 89, 90, 92, 94

   cross-immunity. See cross-immunity

   diabetes, 333

   genetic variation, 293

   immunity, development of, 247

   malaria epidemiology and, 146

   natural immunity, 273

   pathogen recognition molecules, 230

   regulatory DNA, 293–294

   repeated exposures and, 273

   Schistosoma mansoni, 247

   selection pressure of. See immune-selection

   T cell subsets, 293

   vaccines, 273

   virulence evolution and. See virulence evolution

   See also specific systems, processes

immunoglobins, 11, 247, 248, 252, 335

infection-causation explanations, 13–14, 329–330, 338

   diabetes, 325, 327, 332, 333, 336, 337, 338, 339

   examples, 328

infections

   adaptionist view of, 327

   cross-species immunity, 146

   etiology, historical recognition of, 327

   mixed, 146

infectivity

   host-parasite specificity, 228

inflammation, 293, 296, 337–338

influenza viruses, 5, 175–176, 179, 180, 183, 184, 190, 191

   aerosol transmission, 179, 191

   age-cohort antibody levels. See seroarcheology

   agricultural practices, 178

   antibodies, 175, 183, 186, 190

   antigenic analysis, 189

   antigenic drift, 179, 184, 186

   antigenic shift, 179

   antigenic variation-genetic variation, 189–190

   apoptosis, 175

   Asia, Southeast, 178, 181, 183

   avian influenza, 176–177, 178, 179, 183.

      See also specific strains, subtypes

   avian lifespans, 189

   blood groups and, 309

   children, 176, 179

   China, 181, 182, 188

   cross-immunity/transmission, 181, 182, 189

   description of, 175, 179

   disease severity, 184–186

   drug-resistance, 191–192

   egg-passage, 190, 191

   epidemics, 179, 184

   equine influenza, 177, 178

   evolution of, 177, 183–184, 186, 188–189, 190, 191–192

   gene sequencing, 183–184, 186

   genetic reassortment, 176, 177, 178, 179, 181, 182, 189

   H1N1 (1800’s exposures), 183

   H1N1 (1918 Spanish Flu pandemic), 177, 180–181, 183, 184, 187, 188, 189, 192

   H1N1-H3N2 reassortment, 182

   H1N1, reappearance of, 182

   H1N2 reassortant, 2000 flu season, 182

   H2N2 (1957 Asian Flu), 181, 183

   H3 allele, 188, 189

   H3N1 strain, 184–186

   H3N2 (1968 Hong Kong Flu), 181, 183, 184, 186, 187, 188, 192

   H3N2, HA1 domain of, 188, 190

   H5N1 (1997 Hong Kong), 178, 183

   HA1 domain/nucleotide sequence, 186, 187, 188, 189, 190

   hemagglutinin (HA) alleles, 175, 180, 181, 182, 183, 191

   hemorrhagic pulmonary edema, 180

   host range/specificity, 176, 178

   human severe respiratory illness, 178

   immune response to, 183, 186

   immune-selection, 189

   immunity, distribution of, 183, 192

   influenza A, 176, 182, 184–186

   influenza B, 176, 182, 184, 187, 188, 189, 192

   influenza C, 176, 187, 188, 189

   Los Alamos Influenza Database, 191

   mortality rates, 180, 181, 184–186

   museum collections of, 181

   mutation-fixation rates, 177, 188–189

   neuraminidase, 175, 180, 181

   novel hosts, evolutionary rates and, 189

   nucleotide substitutions, Ks/Kn ratio, 190

   original antigenic sin, 183

   Orthomyxoviridae family, 175

   P. falciparum and, 183

   pandemics, 179, 180, 181, 182, 183–184.

      See also specific strain, subtypes

   phylogeny trees, 186, 187, 188–189, 190

   poultry markets, 179, 191

   receptors, 178, 190

   replication errors, 186

   replication rate, 179

   RNA polymerase complex, 186

   rodents, 179

   seasonality of outbreaks, 176, 180, 191

   strains, currently circulating, 179

   strains, relative frequencies of, 184, 185

   strains, types of, 175

   substitutions, nonsynonymous, 191

   surveillance/predictions of, 179, 181, 183, 186, 189, 190

   swine influenza, 177, 178, 181.

      See also specific strains, subtypes

   symptoms, in humans, 179

   time spent evolving in humans, 188

   transmission, avian-mammal, 178, 179

   transmission, human-human, 178, 179

   transmission rates, 189

   vaccines, 186, 190, 191, 284

   virulence evolution, 180, 182, 284

   World Health Organization (WHO), 183

interferon molecules. See Schistosoma mansoni

interleukin factors, 157, 249, 251, 255, 296, 302

iron-deficient diets, 12

Knickerbocker Blood Bank study, 148

Lal, A.A., 75

lateral gene-transfer, 199, 202, 203, 207, 210, 212, 213

lateral host-shifts, 41, 42, 43–47

LD maps, 312

leprosy, 28, 29, 245, 328

lifespan/longevity, 113, 189, 234

linkage disequilibrium, 5, 86, 307

   Csp alleles, 93–94

   decay rates, 121, 125

   ethnicity, 311

   G6PD deficiency, 121, 123, 124, 125, 127, 128, 130

   gene maps, 245, 254, 312

   genetic drift, 104

   HIV/AIDS, 121

   immune-selection, 104

   long range, 121

   longitudinal studies, 104

   Malecot theory, 312

   Schistosoma mansoni, 254

   selection, 119

   time of mutation events, 121

   X chromosome, 124

   See also hitchhiking

Little, T., 222

lizard parasites, 78

local host adaptation, 225, 227

longitudinal studies

   linkage, chance vs immune-selection, 104

lupus, 326

macroevolution, 203

major histocompatibility complex (MHC). See human leukocyte antigen system

malaria, 2, 3, 18, 27, 39, 75–76, 77, 268, 295, 307, 315, 321

   anemia and, 4

   balancing selection, 319

   cerebral, 4, 22, 27

   clinical course of, 27

   competencies, 146

   diagnosis accuracy, 146

   disease severity, 267

   drug resistance, 50

   Duffy blood group, 143

   environmental factors, 267

   epidemiology of, 146

   ethnicity and, 27

   fever therapy trials, 143

   fitness load measurement of, 329

   G6PD deficiency, 113–116, 135

   genome project for, 27, 269

   geographical distribution of, 2, 3, 12, 25, 27, 95, 267, 320

   heterozygote advantage, 4, 12–13

   historical documentation on, 46–47, 133, 141

   host resistance/susceptibility, 26–27, 28, 29, 130, 146, 320.

      See also specific molecules

   immunity, 144, 146

   infection, description of, 86

   infections, mixed, 142, 146

   intervention strategies for, 75–76

   malaria hypothesis, 18, 21, 22, 26

   Malaria’s Eve Hypothesis, 52–53, 54, 55, 57, 58

   malariatherapy, 141, 142, 144, 145, 146, 152

   malignant malaria. See Plasmodium falciparum

   models for, 28, 268

   molecular epidemiologic studies in, 100

   mortality rates, 3, 113, 320

   nutrition and, 146

   parasite population structure, 85

   pedigree analysis of, 267

   periodicities of, 81–82

   Plasmodium. See Plasmodium; specific species

   quinine. See drug resistance

   relapse characteristic, 81–82

   sickle-cell gene (Hb S). See sickle-cell gene

   thalassemias, 12–13, 25

   transmission seasonality, 146

   vaccination-selection. See vaccination-selection

   vaccines. See vaccines

   vector behaviors, 146

   veterinarians and, 77

   virulence evolution, 267, 275

   whole-genome studies of, 27

   See also vaccines; specific parasites

Marek’s Disease Virus (MDV), 282–284, 285, 286

measles, 2, 280

Mendelian genetic diseases, 328, 329

   diabetes, 329, 336

   diseases, 328–329

   mutation rates, 329

Mendelian model, 244, 246, 254, 307, 317

metalloprotease inhibitors, 250

microsatellite loci, 58, 59, 66, 101, 123, 316, 317

   Anopheles gambiae, 47

   G6PD deficiency, 121, 123, 127, 130, 131

   haplotype analysis, 121, 122, 130, 131

   relative frequencies of, 122

   variability of, 55

Mitchison, N.A., 293

mitochondrial DNA, 347

   cytochrome b phylogenies, 41, 42, 79–84

   diabetes, 335

   G6PD, 134

   Malaria’s Eve Hypothesis, 53

   Mitochondrial Eve model, 58

   P. falciparum, 39, 53

molecular epidemiologic studies, 100–101

molecular markers, 100, 101, 102, 103

   See also microsatellite loci

Montalenti, G., 2

mortality, 3

   chronic morbidity trade-off, 296

   influenza pandemics, 181

   vaccines, 273

   virulence evolution, 272, 282, 284–285

Morton, N.E., 307

mosquitoes, 104, 230, 272

   Anopheles, 47, 76, 116, 141

   Anopheles gambiae, 3, 47, 132, 144

   Anopheles maculipennis, 144

   Anopheles quadrimaculatas, 144

multi-locus associations, 104, 211–212

   polygenic traits, 266

   virulence evolution, 266

multifactorial

   diabetes, 339

   diseases, 328

multiple sclerosis, 326

mumps/measles/rubella, 333

mutation rates, 1

   antigenic variation, 55

   avian influenza, 177

   estimation of, 52, 54–55

   fixation rate, 177

   heterozygote advantage, 12

   influenza strains, 189

   malarial parasites, 49–50, 52

   Malaria’s Eve Hypothesis, 54–55

   Mendelian genetic diseases, 329

   resistance genes, 11

   synonymous nucleotide polymorphisms, 48

   thalassemias, 2

mutations

   genomic-composition constraints. See codon bias selection

   selection, convergent, 94

   singletons-coalescence pattern, 119

myxoma virus, 280, 281–282

NADPH, 113

narcolepsy, 326

natural selection, 11, 48, 87, 118

neuraminidase, 175, 180

neurofibrmatosis, 329

neurosyphilis, 141, 142, 269

neutral model/null hypothesis, 55, 87–88, 94, 118, 125, 130, 316.

      See also nucleotide substitutions Kn/Ks ratio

nomenclature, website for, 149

nosocomial infections, 315

nucleotide composition selection. See codon bias selection

   nucleotide diversity, 86–87, 129, 130–131.

      See also specific molecules

nucleotide-repeat evolution. See slipped strand mutations

nucleotide substitutions

   coalescence analysis of, 129, 130–131

   constraints on. See codon bias selection

   evolutionary time scale, 294

   G6PD, 129

   patterns of, 294

   promoter region, 5, 294

   slipped-strand mutations. See slipped-strand mutations

nucleotide substitutions, Ks/Kn ratios, 48, 63–67, 88, 89, 92, 93, 94, 96–98, 128, 190, 236

   codon bias selection, 50

   influenza viruses, 191

   neutral model/null hypothesis, 87, 88

   P. falciparum, 50, 88

   P. falciparum-P. reichenowi comparisons, 50

organ transplants, 296, 321

Orthomyxoviridae family, 175

ovalocytosis, 27, 320

overdominance. See hetereozygous advantage

oxidative stress, 113, 114, 116

P. atheruri, 80

P. berghei, 52

P. brasilianum, 43, 45, 47, 83

P. chabaudi, 28, 268, 270–271, 272, 279, 280

P. cynomolgi, 159

P. falciparum, 3–4, 24–25, 42–43, 46, 48, 57, 77, 268, 320

   animal models for, 84

   antigenic genes, 48, 58

   avian characteristics of, 84

   chromosome sizes, 48

   codon bias selection, 50, 55, 56

   cross-immunity, 25, 146–147

   demographic sweeps, 49, 51–52, 57

   disease severity, 268

   drug resistance, 48

   Duffy blood group, 46, 153

   environmental factors, urbanization, 57

   evolutionary genetics of, 39

   gene sequences of, 48, 53, 54

   genetic diversity, 48, 86

   geographical distribution of, 48, 81–82, 86, 269.

      See also specific regions

   historical documentation on, 57

   HLA/DR allelic variation, 31

   host mortality,

Voorwoord

Infectious Disease and Host–Pathogen Evolution
Cambridge University Press
0521820669 - Infectious Disease and Host–Pathogen Evolution - Edited by Krishna R. Dronamraju
Frontmatter/Prelims
More information


INFECTIOUS DISEASE AND HOST–PATHOGEN EVOLUTION


It has long been recognized that an important factor in human evolution is the struggle against infectious disease, and more recently, it has been revealed that complex genetic polymorphisms are the direct result of that struggle. As molecular biological techniques become more sophisticated, a number of breakthroughs in the area of host–pathogen evolution have led to an increased interest in this field.

   From the historical beginnings of J. B. S. Haldane’s original hypothesis to current research, this book strives to evaluate infectious diseases from an evolutionary perspective. It provides a survey of the latest information regarding host–pathogen evolution related to major infectious diseases and parasitic infections, including malaria, influenza, and leishmaniasis.

   Written by leading authorities in the field, and edited by a former pupil of Haldane, Infectious Disease and Host–Pathogen Evolution will be a valuable reference for those working in related areas of microbiology, parasitology, immunology, and infectious disease medicine, as well as genetics, evolutionary biology, and epidemiology.

Krishna R. Dronamraju is currently the President of the Foundation for Genetic Research in Houston, Texas. He has authored or edited 13 books and has authored over 200 research papers in the field of genetics. A former student of J. B. S. Haldane, whose pioneering work in epidemiologic research he cites as the basis for this book, Dronamraju holds several distinguished honorary positions in both the United States and Europe.







Krishna R. Dronamraju at the U.K. Genome Center (courtesy of Michele Wambaugh).






OTHER BOOKS BY KRISHNA R. DRONAMRAJU

Biological Wealth and Other Essays (World Scientific, 2002)
Biological and Social Issues in Biotechnology Sharing (Ashgate Publishing, 1998)
Science and Society (University Press of America, 1998)
Haldane’s Daedalus Revisited (Oxford University Press, 1995)
If I Am Remembered: The Life and Work of Julian Huxley (World Scientific, 1993)
The History and Development of Human Genetics: Progress in Different Countries (World Scientific, 1992)
Selected Genetic Papers of JBS Haldane (Garland Publishing Company, 1990)
The Foundations of Human Genetics (C. C. Thomas, 1989)
Cleft Lip and Palate: Aspects of Reproductive Biology (C. C. Thomas, 1986)
Haldane: The Life and Work of JBS Haldane with Special Reference to India (Aberdeen University Press, 1985)
Haldane and Modern Biology (The Johns Hopkins University Press, 1968)






Infectious Disease and
Host–Pathogen Evolution




Edited by
Krishna R. Dronamraju
Foundation for Genetic Research, Houston, TX






PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2004

Chapter 8 is a work of the United States Government and is not protected
by Copyright in the United States

Quote from Before Eden used with kind permission of Arthur C. Clarke

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typefaces ITC Stone Serif 9/12.5 pt. and ITC Symbol      System LATEX 2e   [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Infectious diseases and host–pathogen evolution / edited by Krishna R. Dronamraju.
          p.   cm.
       Includes bibliographical references and index.
       ISBN 0-521-82066-9
       1. Microorganisms – Evolution. 2. Host–parasite relationship. 3. Evolutionary genetics.
   4. Human evolution. I. Dronamraju, Krishna R.
   QR13.I546 2004
   616.9′041 – dc21                                                                                      2003055194

ISBN 0 521 82066 9 hardback






To my friend Sir Arthur C. Clarke

“Likewise it absorbed a whole microcosmos of living creatures – the bacteria and viruses which, upon an older planet, had evolved into a thousand deadly strains.

   “Even as the Morning Star set course for her distant home, Venus was dying. The films and photographs and specimens that Hutchins was carrying in triumph were more precious even than he knew. They were the only record that would ever exist of life's third attempt to gain a foothold in the solar system. Beneath the clouds of Venus, the story of Creation was ended.”

From Before Eden, by Arthur C. Clarke (1961)





Contents




List of Contributors page xi
 
      Introduction
      Krishna R. Dronamraju
1
 
PART ONE. J. B. S. HALDANE
 
      1 Haldane's Ideas in Biology with Special Reference to Disease and Evolution
      James F. Crow
11
 
      2 J. B. S. Haldane and the Malaria Hypothesis
      D. J. Weatherall
18
 
PART TWO. MALARIAL PARASITES
 
      3 Evolutionary Genetics of Plasmodium falciparum, the Agent of Malignant Malaria
      Stephen M. Rich and Francisco J. Ayala
39
 
      4 Evolutionary Biology of Malarial Parasites
      Ananias A. Escalante and Altaf A. Lal
75
 
      5 G6PD Deficiency and Malarial Resistance in Humans: Insights from Evolutionary Genetic Analyses
      Sarah A. Tishkoff and Brian C. Verrelli
113
 
      6 The Enigma of Plasmodium vivax Malaria and Erythrocyte Duffy Negativity
      Peter A. Zimmerman
141
 
PART THREE. OTHER PARASITES
 
      7 Influenza Evolution
      Robin M. Bush and Nancy J. Cox
175
 
      8 Free-Living to Freewheeling: The Evolution of Vibrio cholerae from Innocence to Infamy
      Rita R. Colwell, Shah M. Faruque, and G. Balakrish Nair
198
 
      9 Evolutionary Dynamics of Daphnia and Their Microparasites
      Tom Little and Dieter Ebert
222
 
      10 Human Susceptibility to Visceral Leishmaniasis (Leishmania
          donovani
) and to Schistosomiasis (Schistosoma mansoni) Is Controlled by Major Genetic Loci

      A. Dessein, B. Bucheton, L. Argiro, N. M. A. Elwali, V. Rodrigues, C. Chevillard, S. Marquet, H. Dessein, S. H. El-Safi, and L. Abel
241
 
PART FOUR. GENETIC AND EVOLUTIONARY CONSIDERATIONS
 
      11 The Evolution of Pathogen Virulence in Response to Animal and Public Health Interventions
      Andrew F. Read, Sylvain Gandon, Sean Nee, and Margaret J. Mackinnon
265
 
      12 Infection and the Diversity of Regulatory DNA 293
 
Lindsay G. Cowell, N. Avrion Mitchison, and Brigitte Muller
 
      13 Genetic Epidemiology of Infectious Diseases: The First Half-Century
      Newton E. Morton
307
 
      14 The Impact of Human Genetic Diversity on the Transmission and Severity of Infectious Diseases
      Michel Tibayrenc
315
 
      15 Evolution and the Etiology of Diabetes Mellitus
      Kyle D. Cochran and Gregory M. Cochran
325
 
      16 The Future of Human Evolution
      Luca Cavalli-Sforza
343
 
Index 353




Contributors




L. Abel
Laboratory of Human Genetics of Infectious Diseases
INSERM, U. 550
Paris
France

L. Argiro
Immunology and Genetics of Parasitic Diseases
INSERM, U. 399
Marseille
France

Francisco J. Ayala
University of California, Irvine
Department of Ecology and Evolutionary Biology
321 Steinhaus Hall
Irvine, CA 92697-2525

B. Bucheton
Immunology and Genetics of Parasitic Diseases
INSERM, U. 399
Marseille
France

Robin M. Bush
Department of Ecology and Evolutionary Biology
University of California, Irvine
Irvine, CA 92697

Luca Cavalli-Sforza
Genetics Department, M346
Stanford University Medical School
Stanford, CA 94305-5120

C. Chevillard
Immunology and Genetics of Parasitic Diseases
INSERM, U. 399
Marseille
France

Kyle D. Cochran
57 Robbs Hill Road
Lunenberg, MA 01462

Gregory M. Cochran
6708 Loftus Street, N.E.
Albuquerque, NM 87109

Rita R. Colwell
Center of Marine Biotechnology
University of Maryland Biotechnology Institute
701 East Pratt Street
Baltimore, MD 21202

Lindsay G. Cowell
Department of Immunology
Campus Box 3010
Duke University Medical Center
Durham, NC 27701

Nancy J. Cox
Influenza Branch
Centers for Disease Control & Prevention
Atlanta, GA 30333

James F. Crow
Genetics Department
University of Wisconsin
Madison, WI 53706

A. Dessein
Immunology and Genetics of Parasitic Diseases
INSERM, U. 399
Marseille
France

Helia Dessein
Immunology and Genetics of Parasitic Diseases
INSERM, U. 399
Marseille
France

Krishna R. Dronamraju
Foundation for Genetic Research
PO Box 27701-0
Houston, TX 77227

Dieter Ebert
Université de Fribourg
Departement de Biologie
Ecologie et Evolution, Chemin du Musée 10
1700 Fribourg
Switzerland

S.H. El-Safi
Institute for Tropical Medicine
PO Box 1304
Khartoum
Sudan

N.M.A. Elwali
Institute of Nuclear Medicine and Molecular Biology
University of Gezira
Wad Medani
Sudan

Ananias A. Escalante
Division of Parasitic Diseases
National Center for Infectious Diseases
Centers for Disease Control and Prevention
Public Health Service
US Department of Health and Human Services
Atlanta, Georgia 30333

Shah M. Faruque
International Centre for Diarrhoeal Disease, Bangladesh
Dhaka
Bangladesh

Sylvain Gandon
School of Biological Sciences
University of Edinburgh
Edinburgh EH9 3JT
UK

Altaf A. Lal
U.S. Embassy
New Delhi, 110021
India

Tom Little
Institute for Cell, Animal and Population Biology
University of Edinburgh, Kings Buildings
West Mains Road
Edinburgh EH9 3JT
UK

Margaret J. Mackinnon
School of Biological Sciences
University of Edinburgh
Edinburgh EH9 3JT
UK

S. Marquet
Immunology and Genetics of Parasitic Diseases
INSERM, U. 399
Marseille
France

N. Avrion Mitchison
Department of Immunology
Windeyer Institute of Medical Science
46 Cleveland Street
London W1T 4JF
UK

Newton E. Morton
Human Genetics Division
University of Southampton
Duthie Building (MP 808)
Southampton General Hospital
Tremona Road
Southampton SO16 6YD
UK

Brigitte Muller
Deutsches Rheuma Zentrum Berlin
Shumannstrasse 21/22
10117 Berlin-Mitte
Germany

G. Balakrish Nair
International Centre for Diarrhoeal Disease, Bangladesh
Dhaka
Bangladesh

Sean Nee
School of Biological Sciences
University of Edinburgh
Edinburgh EH9 3JT
UK

Andrew F. Read
School of Biological Sciences
University of Edinburgh
Edinburgh EH9 3JT
UK

Stephen M. Rich
Division of Infectious Disease
Tufts University School of Veterinary Medicine
200 Westboro Road
North Grafton, MA 01536

V. Rodrigues
Laboratory of Immunology
University of Medicine
Triangulo Miniero
Uberaba
Brazil

Michel Tibayrenc
Unité de Recherche “génétique des maladies infectieuses”
Unité Mixte de Recherche no. 9926 Centre National de la Recherche Scientifique/ Institut de Recherche pour le Développement
911 avenue Agropolis, BP 64501
34394 Montpellier Cedex 5
France

Sarah A. Tishkoff
Department of Biology
Biology/Psychology Building
University of Maryland
College Park, MD 20742

Brian C. Verrelli
Department of Biology
Biology/Psychology Building
University of Maryland
College Park, MD 20742

D.J. Weatherall
Weatherall Institute of Molecular Medicine
University of Oxford, UK

Peter A. Zimmerman
The Center for Global Health and Diseases
Case Western Reserve University
School of Medicine, W147D
2109 Adelbert Road
Cleveland, OH






© Cambridge University Press

Quote

Review of the hardback: '… some fascinating reading.' Society for General Microbiology

Inhoudsopgave

Part I. J. B. S. Haldane: 1. Haldane's ideas in biology with special reference to disease and evolution James F. Crow; 2. JBS Haldane and the malaria hypothesis D. J. Weatherall; Part II. malarial parasites: 3. Evolutionary genetics of Plasmodium Falciparum, the agent of malignant malaria Stephen M. Rich and Francisco J. Ayala; 4. Evolutionary biology of malaria parasites Ananias A. Escalante and Altaf A. Lal; 5. G6PD deficiency and malarial resistance in humans: insights from evolutionary genetic analyses Sara A. Tishkoff and Brian C. Verrelli; 6. The enigma of vivax malaria and erythrocyte duffy-negativity Peter A. Zimmerman; Part III. Other Parasites: 7. Influenza evolution Robin M. Bush and Nancy J. Cox; 8. Free-living to free-wheeling: the evolution of Vibrio cholerae from innocence to infamy Rita R. Colwell, Shah M. Faruque and G. Balakrish Nair; 9. Evolutionary dynamics of Daphnia and their microparasites Tom Little and Dieter Ebert; 10. Human susceptibility to visceral Leishmaniasis (Leishmania donovani) and to Schistosomiasis (Schistosoma mansoni) is controlled by major genetic loci A. Dessein, B. Bucheton, L. Argiro, N. M. A. Elwali, V. Rodrigues, C. Chevillard, S. Marquet, Helia Dessein, S. H. El-Safi and L. Abel; Part IV. Genetic and Evolutionary Considerations: 11. The evolution of pathogen virulence in response to animal and public health interventions Andrew F. Read, Sylvain Gandon, Sean Nee and Margaret J. Mackinnon; 12. Infection and the diversity of regulatory DNA Lindsay G. Cowell, N. Avrion Mitchison and Brigitte Muller; 13. Genetic epidemiology of infectious diseases: the first half century Newton E. Morton; 14. The impact of human genetic diversity in the transmission and severity of infectious diseases Michel Tibayrenc; 15. Evolution and the etiology of diabetes mellitus Kyle D. Cochran and Gregory M. Cochran; 16. The future of human evolution Luca Cavalli-Sforza.

Winkelvoorraad

Dit product is op dit moment niet op voorraad in een van onze vestigingen.